WPI Nano Life Science Institute, Kanazawa University

NanoLSI Open Seminar is coming!

We would like to inform that NanoLSI Open Seminar will be held on November 4, 2021.
To all NanoLSI members in Kakuma Campus, please come and join the seminar onsite.
The details are as follows:

Title

Reconstructing the Mechanical and Dynamic Behaviors of Cells in Silico
Speaker(s): Dr. Taeyoon Kim, Purdue University, USA (Biomechanics)

Date

Thursday, November 4, 2021

Time

4:30 pm to 5:30 pm

Venue

Hybrid
Onsite: NanoLSI Main Conference Room (4F)*
* To all NanoLSI members in Kakuma Campus, please come and join the seminar onsite.
Online: Zoom**
** For participants from other faculty, campus, and outside of the Institute.

Language

English

Registration: In case onsite participation, pre-registration is not required.
If you would like to join us via Zoom from such as Takaramachi Campus or outside of the Institute, etc., please register using the Google form below (deadline: Nov. 2).
 Go to Google form!

[Abstract]

Actin cytoskeleton is a dynamic structural scaffold used by eukaryotic cells to provide mechanical integrity and resistance to deformation, while simultaneously remodeling itself and adapting to diverse extracellular stimuli. The actin cytoskeleton utilizes these properties to play crucial roles in essential cellular processes such as cell migration and division. However, despite its known mechanical role in cell behaviors, a clear understanding of the mechanical properties of actin cytoskeleton and the molecular origin of these properties still lacks, partly due to experimental limitations. Computer simulations can access time and length scales inaccessible by experiments, and thus aid in creating a descriptive model of the molecular interactions that evolve into the mechanical properties observed on cellular scales. To this end, we have developed a cutting-edge computational model which is designed to reproduce the mechanical and dynamic behaviors of actin cytoskeleton within cells. Guided by explicit experimental data, we systematically explored, via simulation, how the mechanics and dynamics of actins and actin-binding proteins determine the deformation, flow, and stiffness of the passive actin cytoskeleton. We also investigated how interactions between the passive cytoskeletal constituents and active molecular motors lead to force generation, contraction, and morphological changes in the active actin cytoskeleton.

We hope you will join us!

 

For further information, please contact below:
A.Prof. Satoru Okuda, Computational Science (NanoLSI)
Email:  satokuda[at]staff.kanazawa-u.ac.jp
Phone:  076-234-4579

 

ナノ生命科学研究所事務室 広報・事業企画G
TEL: 076-234-4555
Mail: nanokoho[at]adm.kanazawa-u.ac.jp

 

 PAGE TOP