Submission Date: 03/29/2025

2024 Academic Year Bio-SPMs Collaborative Research Research Report Summary

Title of the research project		High-speed atomic force microscopy accelerates designs and	
		development of protein-based vaccines and drugs for controlling	
		pathogenic Staphylococcus aureus	
PI	Name	Dr. Le Thi Phuong Ngan	
(Person in	Affiliated Institution and	University of Science, Ho Chi Minh City, Vietnam	
charge of the	Department/Division/etc.	(Vietnam National University, Ho Chi Minh City)	
research	Position	Researcher	
project)			
			Atomic resolution/3D-AFM
Bio-SPMs that you used			High-speed AFM
(Check the boxes)			SICM
			AFM for Cell Measurement
Collaborative NanoLSI Faculty Members		Dr. Ngo Xuan Kien	

Describe the summary of the research project

Staphylococcus aureus is one of six highly virulent and antibiotic-resistant bacterial pathogens (ESKAPE). Among its exotoxins, alpha-hemolysin (Hla) is a key cytotoxin that forms pores in host cell membranes, contributing to pathogenicity. Despite extensive research, no approved vaccine exists. This study aims to develop a protein-based vaccine using a non-cytolytic Hla mutant and explore therapeutic inhibitors targeting Hla toxicity.

High-Speed Atomic Force Microscopy (HS-AFM) was employed to analyze the structural properties of HIa variants, focusing on:

(i) Designing and visualizing HlaW179AR200A pores immobilized on silica nanoparticles to develop a vaccine against Hla toxicity.

(ii) Screening and elucidating novel inhibitory compounds that prevent Hla pore formation in lipid membranes, leading to new therapeutic strategies.

Key Findings:

- HIa variant visualization: HS-AFM imaging confirmed that HIaH35A and HIaH35L formed pore-like structures, while HIaH35LH48L remained monomeric, indicating disrupted oligomerization.

- Effect of β -Cyclodextrin (CD): CD destabilized HlaWT pores, showing potential as an inhibitor.

- Silica nanoparticle-based vaccine: HS-AFM confirmed that HlaW179AR200A forms stable pre-pore structures on silica nanoparticles, supporting its vaccine potential.

This study highlights the structural dynamics of HIa variants and provides insights into vaccine development and novel therapeutic interventions against *S. aureus* infections.

*This form (Form 3) will be open on the NanoLSI website in the following academic year.

*Note that this form should be prepared in one A4-size paper.

*Submission Deadline: May 9, 2025 (Friday). Submit it as a PDF file.

*Submission Destination: the person in charge of Bio-SPMs collaborative research at WPI-NanoLSI, Kanazawa University

Email: nanolsi openf01@ml.kanazawa-u.ac.jp