Submission Date: 04/28/2025

2024 Academic Year Bio-SPMs Collaborative Research Research Report Summary

Title of the research project		High-speed AFM imaging of T7 bacteriophage tail-fibers	
PI	Name	Balint Kiss	
(Person in	Affiliated Institution and	Department of Biophysics and Radiation Biology, Semmelweis	
charge of the	Department/Division/etc.	University	
research	Position	Postdoc researcher	
project)			
Bio-SPMs that you used (Check the boxes)			Atomic resolution/3D-AFM
		х	High-speed AFM
			SICM
			AFM for Cell Measurement
Collaborative NanoLSI Faculty Members		Hiro	ki Konno, Soma Yamamoto, Noriyuki Kodera

Our goal was to image T7 tail fibers by using HS-AFM and understand their structural dynamics. The tail-fiber is a trimer of the gp17 protein of the T7 bacteriophage, which is primarily used in host cell recognition processes. By expressing gp17 proteins using transfected *E. coli* bacteria we have successfully obtained a homogeneous and clear sample with high enough concentration for HS-AFM imaging. Imaging was performed on APTES coated mica surface, which has allowed sufficient immobilization of the fibers. After optimizing buffer salt concentrations, a sample surface coated by loosely bound tail-fibers was achieved. Fibers were identified as immobilized "L" shaped structures, always found in an anticlockwise orientation. The fibers consist of a thinner proximal, and a thicker distal region, which enclose approximately an angle of 90°. Fiber distal to proximal region bending within ~90 to ~120° and the unwinding of the proximal region triple helix were visualized. Both of these processes may play a crucial role in allowing some flexibility in host recognition and phage to the target cell anchoring. We also propose a model, which suggests that the fibers immobilized on the phage surface are in a torsionally loaded state, and their release directly leads to an extended orientation, resulting in more efficient anchoring on the bacterium.

*Note that this form should be prepared in one A4-size paper.

^{*}This form (Form 3) will be open on the NanoLSI website in the following academic year.

^{*}Submission Deadline: May 9, 2025 (Friday). Submit it as a PDF file.

^{*}Submission Destination: the person in charge of Bio-SPMs collaborative research at WPI-NanoLSI, Kanazawa University