Submission Date: 05/09/2025

2024 Academic Year Bio-SPMs Collaborative Research Research Report Summary

Title of the research project		Unrav	eling	protein	interactions	by	novel	nano-scale
		interpretations (ProNano)						
PI	Name	Antonio Capezza (Ph.D.)						
(Person in	Affiliated Institution and	KTH Royal Institute of Technology						
charge of the	Department/Division/etc.							
research	Position	Researcher						
project)								
			Atomic resolution/3D-AFM					
Bio-SPMs that you used			High-speed AFM					
(Check the boxes)			SICM					
			AFM for Cell Measurement					
Collaborative N	Assist. Prof. Neval Yilmaz							

This project investigates the nanoscopic properties of a novel biodegradable absorbent based on whey protein nanofibrils (PNFs). While macroscopic observations have established that PNF hydrogel formation is closely associated with ionic charge and nanoscale interactions between nanofibrils and ions, the underlying nanoscale details of PNF formation and organization, both in the presence and absence of metal ions, have remained to be fully elucidated.

In this collaborative study, we examined the effect of metal ions, such as NaCl, CoCl₂, and AlCl₃, on PNF structure, and monitored the dynamics of both the fibrillation and defibrillation processes. Our main findings are summarized as follows:

1. Impact of Metal Ions on PNF Dimensions: NaCl produces thinner fibrils, whereas CoCl₂ results in shorter fibrils. In contrast, AlCl₃ does not induce significant morphological changes.

2. Defibrillation at High Ionic Strength: Elevated ionic strength destabilizes PNFs, leading to their defibrillation. The real-time observations of this process have provided valuable insights into how metal ions modulate PNF structure.

3. Fibrillation Dynamics: We have discovered that small PNF seeds facilitate fibrillation under conditions of moderate ionic strength. Fibrillation occurs through a process of simultaneous growth and twisting, producing structures resembling twisted ribbons or helical ribbons.

Collectively, these findings enhance our understanding of PNF behavior and will help in tailoring protein-based material properties.