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Molecular machines are single-molecule chemical engines. 
All of them represent enzymes. 

Now we want to understand how mechanical work can be 
produced by enzymes. 

External work R
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Enzymes are single-molecule protein catalysts
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Enzymes are single-molecule protein catalysts
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Cyclic conformational changes in enzymes

Two conformational motions 
make a cycle.They correspond to 
transitions from free enzyme  E  
to substrate-enzyme complex ES 
and back.  
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Two conformational motions 
make a cycle.They correspond to 
transitions from free enzyme  E  
to substrate-enzyme complex ES 
and back.  
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Here, we have assumed that product P is 
immediately released and have not included 
a separate product-enzyme state EP.



Conformational changes within an enzymic cycle

ES

E

EP
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E

If there are several substrates and (intermediate) products, even more conformational changes may take place.
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E

EP

EP1



Thus, an enzyme can repeatedly change its shape in each next catalytic 
turnover cycle. 

These shape changes are induced by binding and dissociation of ligands 
(substrates and products) and, generally,  also by chemical changes in the 
ligand state in the enzyme.

They represent internal conformational motions within a protein. These internal 
motions can be used to generate mechanical work.



When a ligand L binds to a protein P, additional interactions 
between the ligand and the protein are established. Thus, a new 
physical system LP is formed. The equilibrium conformation of 
ligand-protein complex LP is different from that of a free 
protein P. Therefore, just after ligand binding, this system is 
not in its correct equilibrium state. The process of 
conformational relaxation begins. It continues until the 
equilibrium state of the complex LP is reached.

Similarly, if the ligand is initially present and the complex LP is 
in the equilibrium state, but then the ligand dissociates, the free 
protein P is first not in its equilibrium state. It undergoes 
conformational relaxation (=mechanochemical motion) towards 
its own equilibrium state.

 When the state of the ligand in the complex is changed, LP1 -> 
LP2, this also generally changes the equilibrium conformation 

of the complex, inducing next conformational relaxation 
process within it. 

Ligand-induced mechanochemical motions are relaxational  motions

ES

E

EP



Ligand-induced mechanochemical motions in proteins

Adenylate Kinase Calcium pump ATPase Cdc42

HCV helicase Lysine Sucrose Phosphotase
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Functional mechanochemical motions in enzymes

Transport of ligands to 
o p t i m a l p o s i t i o n s 
within an enzyme.

Transport of ions and 
other particles across 
a membrane

Operations with other 
biomolecules (DNA, 
RNA)

Transport of particles 
o v e r fi l a m e n t s a n d 
microtubules, generation 
of mechanical forces

Ion pumps, active 
channels, transporters

Biomolecular 
manipulators

MotorsComplex enzymes

Whenever cyclic functional mechanochemical motions are involved, the enzyme 
acts as a biological nanomachine!

For motors, such cyclic motions need be further transformed into study translational 
or rotational motions.

How to convert a machine into a motor?



Whenever cyclic functional mechanochemical motions are involved, 
the enzyme acts as a biological nanomachine!

For motors, such cyclic motions need be further transformed into 
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Machine proteins typically have a domain structure

Closed state

If the ligand is removed, the protein undergoes reverse relaxation to its 
initial open state.
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Machine proteins typically have a domain structure

flexible hinge

Open state Closed state

If the ligand is removed, the protein undergoes reverse relaxation to its 
initial open state.



substrate
product

Open state Closed state



A toy dimer model of a protein machine

Dimer : two beads 
connected by elastic spring

Substrate introduces 
additional short spring

Dimer 
contracts

Product is formed

Product is released, 
dimer returns to its original shape



Macroscopic mechanical model: energy

We assume that product is instantaneously released once it has been formed. Then, the 
dimer has only two states: s = 0 without the ligand (substrate) and s = 1 with the ligand 
(substrate). The mechanical elastic energy of the dimer in these two states is (x is the 
distance between the beads)

E(x ,s)= 12k0 x − l0( )2 + 12 skc(x − lc )

Stiffness  
and natural length 
of the dimer spring

Stiffness  
and natural length 

of the ligand spring

l0l1

x

E

s =0

s =1

Es=0 =
1
2k0 x − l0( )2

Es=1 =C +
1
2k1 x − l1( )2

k1 = k0 +kc 			

l1 =
k0l0 +kclc
k0 +kc

C = 12 k0l0
2 +kclc

2( )− 12
k0l0 +kclc( )2
k0 +k( )2



Macroscopic mechanical model: dynamics

Our toy machine is in a viscous fluid. On length scales below tens of nanometers and time 
scale above picoseconds, the dynamics is dominated by viscous friction forces and 
inertial effects are negligible. 

l0l1

x

E

s =0

s =1

l0 − εl1 + ε

Es=0 =
1
2k0 x − l0( )2

Es=1 =C +
1
2k1 x − l1( )2

dx
dt

= −γ ∂E(x ,s)
∂x

The dimer performs relaxation motion in a 
given parabolic potential that depends on 
the ligand state s.

dx
dt

= −γ k0(x − l0)		if		s =0

dx
dt

= −γ k1(x − l1)		if		s =1

Transition	s =0→ s =1	(substrate	binding)
takes	place	when	x = l0 − ε ,
Transition	s =1→ s =0	(combined	product	formation	and	release)
takes	place	when	x = l1 + ε .



Molecular oscillations

l0l1

x

E

s =0

s =1

l0 − εl1 + ε

dx
dt

= −γ k0(x − l0)		if		s =0

dx
dt

= −γ k1(x − l1)		if		s =1

The toy machine performs periodic oscillations. Because equations of motion are linear, 
they can be easily solved. Thus, the profile of oscillations and their period can be 
determined. We have

T = γ 1
k0

+ 1
k1

⎛

⎝⎜
⎞

⎠⎟
ln l0 − l1 − ε

ε
⎛

⎝⎜
⎞

⎠⎟

The oscillations are autonomous and stable with 
respect to perturbations. We have previously 
discussed autonomous self-osci l lat ions in 
macroscopic open reactors. Now, we have similar 
self-oscillations in a single model molecule. 

s =0

s =1



Energetics of the toy machine (macroscopic limit)

Energies of all states of this machine can be easily determined (we assume here that    is

very small).

ε

C

A
B

D A*
EA = E0(x = l0)+Esubstratefree = Esubstrate

free 		(before	substrate	binding)

EB = E1(x = l0)+Esubstratebound =C + 12k1 l0 − l1( )2 +Esubstratebound (just	after	substrate	binding)

EC = E1(x = l1)+Esubstratebound =C +Esubstrate
bound (after	relaxation	to	equilibrium	state	with	bound	substrate)

ED = E0(x = l1)+Eproductfree = 12k0 l1 − l0( )2 +Eproductfree (just	after	the	reaction	and	product	release)

E
A*
= E0(x = l0)+Eproductfree = Eproduct

free (after	relaxation	to	equilibrium	state	of	free	dimer)

Esubstrate
free +E0 EB

EC

ED Eproduct
free +E0
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Assuming	that	no	dissipation	is	involved	in	substrate	binding	
and	product	release	(EA = EB 		and	EC = ED),	we	find	

ΔE = 12k1 l0 − l1( )2 + 12k0 l1 − l0( )2 = 12 k0 +k1( ) l0 − l1( )2

This is the (minimal) difference in the chemical 
potentials of substrate and product, needed to 
operate such a machine.



When thermal fluctuations are included, the model is stochastic

Dimer : two beads 
connected by elastic spring

Substrate introduces 
additional short spring

Dimer 
contracts

Product is formed

Product is released, 
dimer returns to its original shape

All transitions are reversible and their rate constants should satisfy 
the conditions of detailed balance.



Properties of stochastic toy machine

Thermal fluctuating forces need to be included into equations of motion

l0l1

x

E

s =0

s =1
ξ(t)ξ( ′t ) =2γ kBTδ t − ′t( )

dx
dt

= −γ k0(x − l0)+ξ(t),		if		s =0

dx
dt

= −γ k1(x − l1)+ξ(t),		if		s =1

Transitions	(binding	of	substrate,	release	of	product)	
will	be	possible	within	some	windows	(l0 ± ε )	and	(l1 ± ε ).
Conversion	from	substrate	to	product	will	be	reversible,
taking	place	inside	a	window	within	the	cycle.

ΔE0

ΔE1

If	energy	differences	ΔE0 	and	ΔE1 	are	not	large
as	compared	to	kBT ,	this	machine	can	also	operate	
in	the	opposite	direction.	It	will	be	then	converting
"products"	into	"substrates"	if	product	concentration
is	high	enough.



How to make a motor using a cyclic machine?

Mechanical Ratchets

Ratchets are mechanical devices used to convert cyclic 
motion into steady rotation or translation.

Molecular motors are also using ratchet mechanisms.
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How to convert a molecular machine into a motor?

This machine cyclically changes 
its length. Using it, we want to 
construct a motor that would 
transport a filament.

This ratchet motor transports the filament in the left direction by 
distance                   in each its cycle.

Δl

Δl

Δl = l0 − l1
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Inchworm motion mechanism

This is the ratchet motion: the worm just cyclically 
changes its shape.
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We want to make an inchworm from our toy molecular machine

After	one	cycle,	the	machine	moves	forward	by	step		Δl = l0 − l1.

There are molecular motors, such as HCV helicase, that indeed use this translocation mechanism.
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Brownian ratchets

Richard Feynman (1918-1988)

Suppose that the ratchet is very small and the wheel performs 
Brownian rotational motion. Will they ratchet rectify thermal 
fluctuations and generate mechanical work? 

If this were possible, perpetual mobile could have been obtained.  

R. Feynman showed that this cannot be the case. Not only the 
cogwheel, but also the handle will undergo thermal fluctuations. 
As a result, no directed rotational motion will take place.
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Brownian ratchets

Richard Feynman (1918-1988)

Then, R. Feynman considered the ratchet connected 
to two thermal bathes at different temperatures, and 
showed that it can operate as a motor, producing 
mechanical work.

Thermal	Bath
										T1

Thermal	Bath
										T2

Brownian 
ratchet



Motion in ratchet potentials

X

V

γ dX
dt

= − ∂V
∂X

+Fext

Fext

A small force is enough to move a particle to the right, but, under 
the same force in the opposite direction, the motion is blocked. 

Fext
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Thermal Brownian motion in a ratchet potential

X

V

ξ(t)

γ dX
dt

= − ∂V
∂X

+ξ(t)

The answer is NO. Even if the potential has a ratchet form, the equilibrium 
Boltzmann distribution for the particle coordinate holds. There is no flow in this 
equilibrium distribution.

p(X )= Aexp −V(X )
kBT

⎛

⎝⎜
⎞

⎠⎟

Otherwise, work could have been extracted from thermal fluctuations and 
Perpetuum Mobile could have been made. 



Periodic external force

X

V

Suppose for a while that thermal forces are absent, but a periodic external force 
is applied:

γ dX
dt

= − ∂V
∂X

+Fext(t)

Fext(t)

Fext(t)

time

F0

−F0

T0



Periodic external force

X

V

γ dX
dt

= − ∂V
∂X

+Fext(t)

Fext(t)

time

F0

−F0

T0

Hence, steady translational motion 
can be induced by such periodic 
force!

Within	an	interval	of	force	amplitudes
																											F + > F0 > F

−

and	for	sufficiently	long	periods	T ,	this	force	will	lead	
to	particle	translocation	into	a	new	trough	im	each	oscillation	cycle.	



Fluctuating external force

X

V

γ dX
dt

= − ∂V
∂X

+Fext(t)

Analysing this system, it can be noted that the rectangular shape of oscillations is not 
important, the same effect can be found for harmonic or other oscillation shapes. 

Moreover, it is also not important that the oscillations are strictly periodic and their 
amplitude is constant.  

Actually, statistically persistent translocation of the particle can be produced even by a 
fluctuating external force, provided that some conditions are satisfied: 

Such fluctuating force should not be too strong or too weak. Moreover, it should not 
too rapidly change.  

Note, however, that such fluctuating external force will still have different statistical 
properties than the thermal noise. 



Brownian ratchet

X

V

γ dX
dt

= − ∂V
∂X

+Fext(t)+ξ(t)

Thermal noiseNon-thermal  
fluctuating force

Fext(t) =0

When some statistical conditions are satisfied, non-biased fluctuating external force 
can induce steady translational motion in an asymmetric (ratchet) potential!



Can molecular machines behave as Brownian ratchets?

γ dX
dt

= − ∂V
∂X

+Fext(t)+ξ(t)

Polar Filament

A machine is weakly bound to the filament and can move along it, experiencing a periodic ratchet 
potential. 


It is subject to equilibrium thermal fluctuations, which cannot themselves induce persistent 
translational motion. 


Additional interactions with the filament are caused by active irregular conformational changes in the 
machine, powered by the free energy brought under conversion of substrate into product. 


As a result, non-thermal forces acting on the machine arise. 


If some conditions are satisfied, such actively fluctuating machine is able to persistently translocate 
itself along the filament. 

+-



Deterministic ratchets: 
ordered conformational 

oscillations

Brownian ratchets: 
generation of non-thermal 

active noise 

Enzyme

Two motor operation modes

Characteristic	energy	of	ordered	conformational	oscillations	in	deterministic	ratchets	
must	be	significantly	larger	than	the	thermal	energy	kBT .	Therefore,	the	difference	Δµ = µs − µp

in	chemical	potentials	of	substrate	and	product	must	also	be	large	as	compared	to	kBT .
In	contrast	to	this,	Brownian	ratchets	may	operate	even	when	Δµ ∼ 	kBT .



The entire cell can be viewed as a factory that contains an elaborate network of interlocking 
assembly lines, each of which is composed of a set of large protein machines. .... Like the 
machines invented by humans to deal efficiently with the macroscopic world, these protein 
assemblies contain highly coordinated moving parts.


