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Lectures 1 & 2



Amazing Mechanical Machines




Bacterium E. coli

A factory of single-molecule
nanoscale machines: motors, ion
pumps, enzymes,... Many thousands
of such machines are packed inside a
volume of about 1 pm3. The factory
is self-requlated and is able to
reproduce itself.
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Introduction

We have always underestimated cells. Undoubtedly we
still do today. But at least we are no longer as naive as
we were when | was a graduate student in the 1960s.

Overview

with the macroscopic world, these protein assemblies
contain highly coordinated moving parts. Within each
protein assembly, intermolecular collisions are not only
restricted to a small set of possibilities, but reaction C
depends on reaction B, which in tum depends on reac-
tion A—just as it would in a machine of our common
experience (Alberts, 1984).

Underlying this highly organized activity are ordered
conformational changes in one or more proteins driven by
nucleoside triphosphate hydrolysis (or by other sources
of energy, such as an ion gradient). Because the confor-
mational changes driven in this way dissipate free en-
erqy, they generally proceed only in one direction.

The entire cell can be viewed as a factory that contains an elaborate network of interlocking
assembly lines, each of which is composed of a set of large protein machines. .... Like the
machines invented by humans to deal efficiently with the macroscopic world, these protein
assemblies contain highly coordinated moving parts.
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Introduction

We have always underestimated cells. Undoubtedly we
still do today. But at least we are no longer as naive as
we were when | was a graduate student in the 1960s.

with the macroscopic world, these protein assemblies
contain highly coordinated moving parts. Within each
protein assembly, intermolecular collisions are not only
restricted to a small set of possibilities, but reaction C
depends on reaction B, which in tum depends on reac-
tion A—just as it would in a machine of our common
experience (Alberts, 1984).

Underlying this highly organized activity are ordered
conformational changes in one or more proteins driven by
nucleoside triphosphate hydrolysis (or by other sources
of energy, such as an ion gradient). Because the confor-
mational changes driven in this way dissipate free en-
ergy, they generally proceed only in one direction.

The entire cell can be viewed as a factory that contains an elaborate network of interlocking
assembly lines, each of which is composed of a set of large protein machines. .... Like the
machines invented by humans to deal efficiently with the macroscopic world, these protein

assemblies contain highly coordinated moving parts.




Real-time imaging of walking myosin motors
R—

Myosin motors walking over actin filaments. High-speed atomic force
microscopy (AFM). Scan size 130 nm x 65 nm, scan rate 146.7 ms per frame

Kodera, Yamamoto, Ishikawa & ,Video imaging of walking myosin V
by high-speed atomic force microscopy“ Nature 468, 72 (2010)

Artistic animation



Macroscopic Machines Molecular Machines and
and Motors Motors

Characteristic sizes: centimeters to - Characteristic sizes: nanometers to fractions
meters of a micrometer

Characteristic times: seconds to minutes - Characteristic times: milliseconds to seconds

Material basis: metals - Material basis: biomolecules

Energy is continuously supplied - Energy is discretely supplied in chemical form
with ATP molecules

Ordered, coordinated motions of | | |
mechanical parts - Ordered, coordinated intramolecular motions
of protein domains

Operate under well-defined

environmental conditions Operate under strong fluctuations in

environment

Robustness against damage: low High robustness against perturbations




Machine operation is autonomous and
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EPERSPECTIVES
Self-Organization in Living Cells

Benno Hess and Alexander Mikhailov

A living cell is an open system with a flow
of energy passing through it. As shown by
Schroedinger (1), the energy flow creates
the conditions for strong deviations from
thermodynamic equilibrium. This results in
the phenomena of self-organization, the pa-
rameters of which are set by genetic as well
as epigenetic constraints and opens up the
possibility of autonomous pattern forma-
tion as revealed in the fundamental contri-
butions by Turing (2) and Prigogine (3).

Recently, Lechleiter et al. (4) have ob-
served propagating calcium waves inside
single cells (frog eggs with a diameter of
about 1 mm). Their properties were very
similar to those of the spiral waves in the
Belousov-Zhabotinsky reaction (5). More-
over, there are suggestions that stationary
Turing patterns could also be found within
biological cells (6).

However, it would be misleading to ex-
pect that the processes of self-organization
in living cells represent simply a reduced
copy of the pattern-formation phenomena
in macroscopic reaction-diffusion systems.
The laws of physics, when applied at a dif-
ferent scale typical for intracellular pro-
cesses, can influence the mechanisms in-
volved and produce a wealth of new prop-
erties, as demonstrated, for instance, by
Purcell (7) for the case of the cell’s motion.

The diffusion time for macromolecules
in a cell or a cellular compartment with the
linear size of 1 um is about 10 ms. Because
the turnover rate for many intracellular en-
zymatic reactions is a few hundreds per sec-
ond, it means that within the duration of a
single round of the catalysis the molecules
can cross the entire reaction volume. This
makes spatial pattern formation based on
such reactions and diffusion at small length
scales practically impossible. The finest
spatial details of waves in the experiment
(4) were still on the order of 10 ym. The
estimates are less restrictive for fast enzy-
matic reactions with the turnover times be-
low 0.1 ms. The possibility that under high
enzyme concentrations these reactions may
develop local spatial patterning should be
further investigated (6).

The random Brownian motion of mac-
romolecules inside cells is extremely strong.
Our estimates of a characteristic traffic

B. Hess is at the Max Planck Institut fur Medizinische
Forschung, Jahnstrasse 29, D-69120 Heidelberg,
Germany. A. Mikhailov is at the Fritz-Haber-Institut der
Max-Planck-Gesellschaft, Faradayweg 4-6, D 14195
Berlin, Germany.

time show that within a compartment of a
micrometer size, any two molecules meet
each other within a time of about 1 s.
Thus, simple diffusion fills the cellular
compartment space with components al-
ways ready to react. At such smaller scales,
the chemical system of a living cell is far
from resembling a macroscopic unstirred
chemical reactor. Rather, it should be
viewed as a network formed by a popula-
tion of active macromolecules that is char-
acterized by a very high degree of “commu-
nication” between its members. This im-
plies a different mode of self-organization
similar to the collective behavior of insect
societies or immune networks (8).

Another special aspect of self-organiza-
tion in living cells is the abundance of en-
ergy contained in thermal fluctuations. For
instance, random hydrodynamic flows in-

A pattern emerges. Self-similar organization of microtu-
bules showing pseudohelical bands as part of a larger

scale organization. Image is 1570 um wide.

duced by thermal fluctuations inside a cell
have velocities on the order of 10 um/s in
the time range of 10 ms and the character-
istic lengths of 1 um. These strong thermal
fluctuations can be employed by far-from-
equilibrium subsystems inside the cells.

The laws of thermodynamics prevent
the directed use of thermal fluctuations.
However, as shown by Feynman (9) in his
analysis of the thermal ratchet (a process
allowing motion in one direction only),
this does not generally apply to systems
with some components that are far from
thermal equilibrium (and thus, “Maxwell’s
demon” may operate if it receives and dissi-
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pates energy from external sources). The
ratchet has already been proposed by Hux-
ley (10) in his explanation of force genera-
tion by muscle fibers. Several further exam-
ples of rectification of thermal fluctuations
by organelles have recently been considered
[see, for example (11)]. It might be that the
ratchet effects are involved to a much
larger extent in the function of living cells
and the organization of intracellular traffic.

The temporal self-organization of chem-
ical processes, expressed in the generation
of different periodicities and interactions.
between them, plays a fundamental role
in living cells. Recent advances in the
understanding of the mechanism of cal-
cium oscillations not only revealed its
widespread occurrence in cellular systems
but showed its inherent response to fre-
quency and coding to be a most important
feature (12). This property might well be
involved in the phenomenon of synchroni-
zation of synaptic boutons (13), in the
shuttle streaming of Physarum polycephalum
(14), in the propagation of calcium waves
in Xenopus laevis oocytes (4), and mitotic
cell cycles (15).

In this framework, the dynamic pro-
cesses in larger cellular structures
such as genomic components or the
cellular actin and tubulin, the shape
producing and controlling entities,
should not be overlooked. Whereas
the exploration of the first set of
structures seems still to have a long
way to go [although proper method-
ologies are coming up (16, 17)], in-
vestigations of the second class are
already at hand.

The dynamic network of micro-
tubules plays an essential role in the
self-organization of cellular struc-
tures, turnover, and motility. The
knowledge of its mechanisms and of
the control of formation and decay
(polymerization-depolymerization
cycles) are prerequisites for under-
standing of the cellular interior.
The complex organization of the
microtubule turnover is revealed in
the typical properties of arising dis-
sipative structures. Recently, spatial pat-
tern formation from oscillating microtu-
bules has been observed (18, 19). Depend-
ing on the length and the frequency of os-
cillations, different spatial microtubulin
patterns might readily be formed, leading
to a variety of intracellular structures that
fit well to the general size of the cellular
reaction space as well as its time domains.
Here, the biological design of suitable con-
trol mechanisms is a problem area open
for future research. Studies reported by
Tabony on p. 245 of this issue (20) clearly
demonstrate the influence of reaction-dif-
fusion instabilities and related bifurca-
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IMPERSPECTIVES

Self-Organization in Living Cells
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A living cell is an open system with a flow
of energy passing through it. As shown by
Schroedinger (1), the energy flow creates
the conditions for strong deviations from
thermodynamic equilibrium. This results in
the phenomena of self-organization, the pa-
rameters of which are set by genetic as well
as epigenetic constraints and opens up the
possibility of autonomous pattem forma-
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served propagating calcium waves  inside
single cells (frog cggs with a diameter of
eir properties were very
similar to those of the spiral waves in the
Belousov-Zhabotinsky reaction (5). More-
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Turing patterns could also be found within
biological cells (6).
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pect that the processes of self-organization
in living cells represent simply a reduced
copy of the pattem-formation phenomena
in macroscopic reaction-diffusion systems.
The laws of physics, when applied at a dif-
ferent scale typical for intracellular pro
cesses, can influence the mechanisms in-
volved and produce a wealth of new prop-
rties, as demonstrated, for instance, by
Purcell (7) for the case of the cell’'s motion.
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linear size of 1 pm is about 10 ms. Because
the tumover rate for many intracellular en
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spatial details of waves in the experiment
(4) were still on the order of 10 um. The
estimates are less restrictive for fast enzy-
matic reactions with the tumover times be-
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time show that within a compartment of a
micrometer size, any two molecules meet
cach other within a time of about 1
Thus, simple diffusion fills the cellular
compartment space with components al-
ways ready to react. At such smaller scales,
the chemical system of a living cell is far
from resembling a_macroscopic unstirred
chemical reactor. Rather, it should be
viewed as a network formed by a popula
tion of active macromolecules that is char-
acterized by a very high degree of “commu-
nication” between its members. This im-
plies a different mode of self-organization
similar to the collective behavior of insect
sociceties or immune networks (8)
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duced by thermal fluctuations inside a cell
have velocities on the order of 10 pm/s in
the time range of 10 ms and the character-
istic lengths of 1 um. These strong thermal
fluctuations can be employed by far-from-
equilibrium subsystems inside the cells.

The laws of thermodynamics prevent
the directed use of thermal fluctuations.
However, as shown by Feynman (9) in his
analysis of the thermal ratchet (a process
allowing motion in one direction only),
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with some components that are far from
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Self-organisation in non-equilibrium systems

Stochastic thermodynamics of nanomachines
Mechanochemical motions in proteins, molecular ratchets
Methods of computational modelling for proteins (all-atom
MD, Go models, elastic networks)

Examples of structurally resolved modelling for protein
machines

Allosteric self-regulation of machine cycles



Entropy is a statistical measure of disorder:
W is the number of microscopic states that all correspond to
a given macroscopic state

The Second Law of Thermodynamics:
Entropy increases with time until the state of thermal
equilibrium is reached.

All systems tend to reach the state with the maximal
possible disorder?



Do biological systems contradict the laws of physics?

Biological organisms seem to retain and even increase
their order over time. Does this contradict the Second
Law of Thermodynamics?

The Second Law is only applicable to closed systems. It
does not hold for a biological organism that permanently
exchanges substances and energy with its environment.
Even if such an organism is in a steady state, it is not the
state of thermal equilibrium. The flows persist in this
steady state.

,» 10 maintain a closed system at equilibrium, no work is
needed, but work cannot be also performed by a system
in such a state. A dammed mountain lake contains much
potential energy, but, in absence of outgoing flow, it
cannot power a motor or a turbine. To generate work,
the system needs to be under a transition to an
equilibrium site. To keep the system over a long time
under such transition, one has to engineer it like a water
power station, supplying new material whose energy is
used to produce work.*

Ludwig von Bertalanffy (1901-1972)

In 1926 (at the age of 25!), von
Bertalannfy had finished his study
of philosophy and art history with a
doctoral degree at the University of
Vienna and, 2 years later, published
his first book on theoretical
biology, Critical Theory of Form
Development, soon followed by
two volumes of Theoretical
Biology.



What is Life?

as___,

VAN

0 20, but h= j* — j" may have any sign.

Thus, biological organisms feed on ,negative entropy*, i.e.

they import order.

Erwin Schrédinger (1877-1961)

In emigration in Ireland, he had given in
1943 several lectures in the Dublin Institute
for Advanced Studies which were published
one year later as a book with the title What
is Life? The Physical Aspect of a Living
Cell. The lectures were attended by an
audience of about four hundred, both
physicists and biologists.



Thermodynamic free energy is defined as

F=E-TS
Energ/y' Temperature

Suppose that (internal) energy E is not consumed or released inside an open system and temperature is fixed.
Than, the balance equation for free energy is

dF ds

— =T —=—=-To+j" —jf
dt dt ]m ]out
dF
In the steady state we have E =0
.F .F
Hence j,=To+j 2To

The influx of free energy should counterbalance the effect of persistent entropy production
in a non-equilibrium steady state.

A biological organism imports ,order” with the flux of free energy coming with its nutrients,
even just to maintain its steady state.



Thermal Bath

To

This closed system undergoes relaxation to the
equilibrium state with temperature Tg. It can perform

work only transiently, during the relaxation process.
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Thermal Bath 1 Thermal Bath 2

T; T,

This open system cannot reach any thermal equilibrium
state. In its steady state, a flow of energy is passing
through the system. Work can be persistently
performed.
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External Work R

Thermal Bath 1 Q Q Thermal Bath 2
i System A T1 > T2

T T,

Suppose that the system is in a steady state (but not at thermal equilibrium!). Even though the state is stationary, heat
Q would continue to arrive from the bath with the higher temperature and become released into the colder bath.

d
Because dQ=TdS, we have j’ = Tl% (this is the rate of entropy removal from the hot bath)

1

'S

d
and j. = %% (this is the rate of entropy uptake by the cold bath).

2

in

Thus, the Second Law of thermodynamics yields
d d

§=G+j.s = I =0'+l @ _140

dt oo T dt T, dt

The First Law of thermodynamics implies that a balance equation for the internal energy should hold
dE dQ1 B sz N dR

dt dt dt dt

where R is the work produced by the system.

If the system changes its volume V,

dR dv

@ Pa

where p is pressure.



External Work R

Thermal Bath 1 Q Q Thermal Bath 2
i System . IL>T

T

T

Assuming a steady state,
dE _dS _
dt dt

From the Second Law we get
d T d
dt T dt
Substituting this into the First Law, we find the rate of work generation (or power)

Thus, the system can operate as a heat engine and generate mechanical
)dQ1 work!

Most work is performed if the engine operates near thermal equilibrium, i.e.
where the entropy production rate is very small.

The efficiency of the engine is defined as the ratio of work generation (power)
to the heat flow from the hot bath

dR/dt
=40, dt

When o — 0, we find the maximal possible efficiency of the heat engine L



Chemostat X Chemostat Y

I Hy

Thermal Bath

To

Now, we consider an open chemical reactor where molecules X (substrate) are converted
into molecules Y (product). This reactor is connected to two external reservoirs
(chemostats) where concentrations of molecules X or Y are maintained constant.The
reactor is also connected to an external heat bath. The chemical potential in the chemostat
for X molecules is higher than in the chemostat for Y molecules.



External Work R
We assume that, in the considered chemical reaction,
Chemostat X Jx jy Chemostat Y
™ ystem [ ™ one X molecule is converted into one Y molecule
Hx Hy
¢o X—Y
u, > U, Thermal Bath
The First Law of thermodynamics yields
To
dE—,uj o +dR dQ
de “% TYY de dt

where j, is the number of molecules X arriving per unit time into the reactor

and j, is the number of molecules Y leaving it per unit time.

The Second Law of thermodynamics yields

§—0'+S | —S.] _1de
dt xSy T dt

Here s, and s, are amounts of entropy per molecule X orY in teh respective chemostats.

According to thermodynamics, we have

u, _aux

S, =— , S, =
* JarT  * oT




xtema Work From the Second Law
Chemostat X j - Chemostat Y
X [JY
Hx >ystem Hy dQ
$Q E=TOO'+TO(SX—SY)]'
Hy = Hy Thermal Bath Then, the Second Law yields
To
dR .
Ez_%o-+|:71()(sx _SY)_('uX —,LLY)]]
In the steady state,
dE dS . . _ Thus, the system can operate as a chemical engine and generate
I = I =0 and j,=j, =] mechanical work!

Most work is performed if the engine operates near thermal equilibrium,
i.e. where the entropy production rate is very small.

The efficiency of the chemical engine is defined as the ratio of work generation (power)
to the (free) energy flow from the substrate chemostat

_ dR/dt
(1 —1,)j
(" )
. . . - : . I, o
When o — 0, we find the maximal possible efficiency of the chemical engine n= ! 5T ( M, — M, ) -1
Hy—Hy




Example: the Brusselator model

Limit cycle

Substrate Product

Amplitude and shape of such self-oscillations do not depend on
initial conditions. The oscillations are not induced by external forces,
but autonomously generated by a system itself.



Self-organised dissipative patterns in reaction-diffusion systems
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These autonomously formed spatial structures are possible in distributed open
chemical reactors. They exist only as long as the energy or material flow

passing through a system is maintained. Like in self-oscillations, their
amplitude and shape are determined by the system itself, not externally
imposed.

Alan Turing (1912 - 1954)

A mathematical genius, the founder
of modern computer science (the
Turing machine). His article, The
Chemical Basis of Morphogenesis
(1952), has laid foundations for the
theory of non-equilibrium pattern
formation in  chemical and
biological systems.






A toy model of molecular turbine (motor/pump)
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e ‘ Now, we want to see what becomes different when
we go to nanoscale...
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As an illustration, | use a toy model of molecular
turbine proposed by my friend, prof Jose Maria
Sancho, from the Barcelona university.

This machine can be used as a motor or as a pump (if
it made to rotate in the opposite direction by an
external force

Watermill/ wheel pump



When external force is relatively small,
the turbine operates as a motor
(mechanical engine). The pressure
difference between two compartments
pushes the piston in the right direction.
When the end of the channel is
reached, the piston is replaced by a
new one at the opposite side and the
cycle is repeated. In each cycle,
mechanical work is produced.



When external force is relatively small,
the turbine operates as a motor
(mechanical engine). The pressure
difference between two compartments
pushes the piston in the right direction.
When the end of the channel is
reached, the piston is replaced by a
new one at the opposite side and the
cycle is repeated. In each cycle,
mechanical work is produced.



When external force is strong, the
turbine operates as a pump. The piston
is dragged to the left until it reaches
the end of the channel. Then is it
replaced by another piston on the
opposite side and the same motion is
repeated again. In each cycle, a certain
number of particles is transported
against their gradient.



When external force is strong, the
turbine operates as a pump. The piston
is dragged to the left until it reaches
the end of the channel. Then is it
replaced by another piston on the
opposite side and the same motion is
repeated again. In each cycle, a certain
number of particles is transported
against their gradient.



The macroscopic theory

P The total force acting on the piston is
2
F=(p,—p,)A-F,

where p, and p, are pressures
in the two compartments.
For the ideal gas p=k,Tp,

where p is the density. Therefore,

F= kBTA(,o1 —pz)—FE
If v is the effective friction coefficient of the piston,

the piston velocity therefore is

kBTA(pl_pZ)_FE
4

F
Vv=—=
4

When F_ <F__, the turbine operates as a motor,

tall’

The velocity vanishes and changes

its sign at the external stall force when FE > Fsta,,;

the turbine operates as a pump.

F _ =kTAAp

sta



Now we calculate the flux of particles J. This is the number of particles
transported through the channel per unit time.

P,

[f the turbine operates as a motor (F. <F,_ ), the number of particles

transported in each stepis N" =V p where V = AD is the channel volume.

If T is the step time, we have

A .
] - %: VAID1 lfFE < Fstall'
For the pump,
VOPZ

J :T: vAp, it F, > F .

The (Gibbs) free energy transported with each particle
in the case of ideal gas is

P
Ag=p,—u,=kTlnp —k Tlnp =k Tln—

P,
where 1, and u, are chemical potentials of particles in two compartments.

The energy fluxes associated with particle flows in two regimes therefore are

P"=Ag]", P =Ag]”



Motor F, <F

stall

The mechanical power (work per unit time) is

P =F v=1FE(F —F)

M E stall
Y

The Gibbs free energy used to generate

this work per unit time is
P"=]"(u,—u,)=Ap,v(u, —u,)
The motor efficiency is

P F

M E

P Ap, (4, —4,)

TI:
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Dashed curves correspond to the macroscopic theory

R. Perez-Carrasco, J. M. Sancho, Europhys. Lett. 100, 40001 (2012)
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Motor F, <F

stall

The mechanical power (work per unit time) is

P =F v=1FE(F —F)

M E stall
Y

The Gibbs free energy used to generate

this work per unit time is
P"=]"(u,—u,)=Ap,v(u, —u,)
The motor efficiency is

P F

M E

P Ap, (4, —4,)

TI:

Pump FE >F

stall

The mechanical power (work per unit time)

used to operate the pump is

1
PM :FEVZ;FE(EGMII_FE)
The generated Gibbs free energy used to transport particles

against the gradient per unit time is
P =] (4, —u,)=Ap,v(u, —u,)
The pump efficiency is

P~ _Apyvs, —u,) _ Ap, (4, —4,)
P VF F

M E E

7”:

Both efficiencies reach their maxima at the stall force!
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Lett. 100, 40001 (2012)



What becomes different at nanoscales?

A. The piston will be subject to thermal fluctuations that affect its motion.

B. The number of particles transported per a step may be small and stochastic
motions of individual particles have to be resolved.

- The piston motion is now described by a stochastic Langevin equation

ax -
yE_F+§(t)

It includes a random thermal force &(t).
According to the Langevin theory of Brownian motion;
this noise has Gaussian statistics, its mean value is zero

and its correlation function is
(8@)5) =2k, TS(t~t")

The frequency spectrum of thermal noise is flat

and therefore it is also called "white".
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to the theory with thermal fluctuations
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When thermal fluctuations are taken into account,

the mean flux of particles through the channel is

This leads to two principal effects:
1. Within an interval of forces (gray region in the figure)
the nanoturbine does not persistently operate as a motor or a pump,

it alternates randomly between the two regimes

2. The efficiencies of the nanoscale motor and pump vanish

at the boundaries of this gray zone.

R. Perez-Carrasco, J. M. Sancho, Europhys. Lett. 100, 40001 (2012)



What becomes different at nanoscales?

A. The piston will be subject to thermal fluctuations that affect its motion.

B. The number of particles transported per a step may be small and stochastic
motions of individual particles have to be resolved.

B The Brownian motion of particles i =1,2,..,N that interact with the piston

was numerically simulated, together with the stochastic motion of the piston itself

y S ==Yk~ X)-F, + £

i

ax: =
7, ==V (%= X)+5,(0)

where the interaction potential was

a

x—X ;
Vp(xi—X):Hexp —( ’ ]

The numerical study was performed for a more efficient, two-piston turbine.

R. Perez-Carrasco, J. M. Sancho, Phys. Rev. E 88, 042705 (2013)



Comparison of analytical predictions and numerical simulation data
for the efficiencies of the turbine

0.6f // ‘|
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K 'l A=150 nm*, D=4 nm
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Dashed and solid curve are analytical predictions (for one and two

pistons) accounting only for thermal fluctuations for the pistons, symbols
show numerical simulation results

R. Perez-Carrasco, J. M. Sancho, Phys. Rev. E 88, 042705 (2013)



