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Amazing Mechanical Machines

YouTube: Amazing molecular machines.mp4
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Bacterium E. coli 

A  factory  of  s ingle-molecule 
nanoscale  machines:  motors,  ion 
pumps,  enzymes,...  Many  thousands 
of  such  machines  are  packed  inside  a 
volume of  about 1 �m3.  The factory 
is  self-regulated  and  is  able  to 
reproduce itself. 

0.5 µm

1 µm3.





The entire cell can be viewed as a factory that contains an elaborate network of interlocking 
assembly lines, each of which is composed of a set of large protein machines. .... Like the 
machines invented by humans to deal efficiently with the macroscopic world, these protein 
assemblies contain highly coordinated moving parts.
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Real-time imaging of walking myosin motors

Kodera, Yamamoto, Ishikawa & Ando „Video imaging of walking myosin V 
by high-speed atomic force microscopy“ Nature 468, 72 (2010)

Myosin motors walking over actin filaments. High-speed atomic force 
microscopy (AFM). Scan size 130 nm x 65 nm, scan rate 146.7 ms per frame

Artistic animation



Macroscopic Machines 
and Motors

• Characteristic sizes: centimeters to 
meters

• Characteristic times: seconds to minutes

• Material basis: metals

• Energy is continuously supplied

• Ordered, coordinated motions of 
mechanical parts

• Operate under well-defined 
environmental conditions

• Robustness against damage: low 

Molecular Machines and 
Motors

• Characteristic sizes: nanometers to fractions 
of a micrometer

• Characteristic times: milliseconds to seconds

• Material basis: biomolecules

• Energy is discretely supplied in chemical form 
with ATP molecules

• Ordered, coordinated intramolecular motions 
of protein domains

• Operate under strong fluctuations in 
environment

• High robustness against perturbations



Machine operation is autonomous and self-organized



Machine operation is autonomous and self-organized

Industrial revolution: Factory in England,  18th century





Gerhard Ertl,  
Nobel Prize in Chemistry 2008



Plan of this lecture course

1. Self-organisation in non-equilibrium systems 
2. Stochastic thermodynamics of nanomachines 
3. Mechanochemical motions in proteins, molecular ratchets 
4. Methods of computational modelling for proteins (all-atom 

MD, Go models, elastic networks) 
5. Examples of structurally resolved modelling for protein 

machines 
6. Allosteric self-regulation of machine cycles



Ludwig Boltzmann (1844-1906)

Fundamentals of Statistical Mechanics

S = kB lnW

Entropy is a statistical measure of disorder:

W is the number of microscopic states that all correspond to 
a given macroscopic state

dS
dt

≥0

The Second Law of Thermodynamics:

Entropy increases with time until the state of thermal 
equilibrium is reached.

All systems tend to reach the state with the maximal 
possible disorder?



Ludwig von Bertalanffy (1901-1972)

Do biological systems contradict the laws of physics?

Biological organisms seem to retain and even increase 
their order over time. Does this contradict the Second 
Law of Thermodynamics?

In  1926  (at  the  age  of  25!),  von 
Bertalannfy had finished his  study 
of philosophy and art history with a 
doctoral degree at the University of 
Vienna and, 2 years later, published 
his  first  book  on  theoretical 
biology,  Critical  Theory  of  Form 
Development,  soon  followed  by 
two  volumes  of  Theoretical 
Biology.

The Second Law is only applicable to closed systems. It 
does not hold for a biological organism that permanently 
exchanges substances and energy with its environment. 
Even if such an organism is in a steady state, it is not the 
state of thermal equilibrium. The flows persist in this 
steady state.

„To maintain a closed system at equilibrium, no work is 
needed, but work cannot be also performed by a system 
in such a state. A dammed mountain lake contains much 
potential energy, but, in absence of outgoing flow, it 
cannot power a motor or a turbine. To generate work, 
the system needs to be under a transition to an 
equilibrium site. To keep the system over a long time 
under such transition, one has to engineer it like a water 
power station, supplying new material whose energy is 
used to produce work.“



Erwin Schrödinger (1877-1961)

What is Life?

Entropy 

production

Thus, biological organisms feed on „negative entropy“, i.e. 
they import order.

In  emigration  in  Ireland,  he  had given in 
1943 several lectures in the Dublin Institute 
for Advanced Studies which were published 
one year later as a book with the title What 
is  Life?  The  Physical  Aspect  of  a  Living 
Cell.  The  lectures  were  attended  by  an 
audience  of  about  four  hundred,  both 
physicists and biologists.

dS
dt

=σ −h

Entropy 

export

σ ≥0,	but	h= jsout − jsin 	may	have	any	sign.



Thermodynamic free energy is defined as

F = E −TS

Energy Temperature

Suppose that (internal) energy E is not consumed or released inside an open system and temperature is fixed.
Than, the balance equation for free energy is

dF
dt

= −T dS
dt

= −Tσ + jin
F − jout

F

In the steady state we have dF
dt

=0

Hence jin
F =Tσ + jout

F ≥Tσ

The influx of free energy should counterbalance the effect of persistent entropy production
 in a non-equilibrium steady state. 

A biological organism imports „order“ with the flux of free energy coming with its nutrients,
even just to maintain its steady state.



Ilya Prigogine (1917-2003)

Nobel Prize in Chemistry 1977

He was born in Russia and emigrated as 
a child with his parents first to Germany 
and  then  to  Belgium.  In  1941  he  has 
received  a  doctoral  degree  from  Free 
University of Brussels and, in 1947, (at 
the age of 30!) published his first book A 
Thermodynamic  Study  of  Irreversible 
Phenomena.

Thermal Bath

T0

System

 External Work R

Q

This closed system undergoes relaxation to the 
equilibrium state with temperature T0. It can perform 
work only transiently, during the relaxation process.
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Nobel Prize in Chemistry 1977

He was born in Russia and emigrated as 
a child with his parents first to Germany 
and  then  to  Belgium.  In  1941  he  has 
received  a  doctoral  degree  from  Free 
University of Brussels and, in 1947, (at 
the age of 30!) published his first book, 
A Thermodynamic Study of Irreversible 
Phenomena.

System
Thermal Bath 2

T2

Thermal Bath 1

T1

 External Work R

Q1 Q2

This open system cannot reach any thermal equilibrium 
state. In its steady state, a flow of energy is passing 
through the system. Work can be persistently 
performed.



System
Thermal Bath 2

T2

Thermal Bath 1

T1

 External Work R

Q1 Q2

Suppose that the system is in a steady state (but not at thermal equilibrium!). Even though the state is stationary, heat 
Q would continue to arrive from the bath with the higher temperature and become released into the colder bath.

T1 >T2

Because	dQ =TdS , 	we	have	jins =
1
T1

dQ1
dt

	(this	is	the	rate	of	entropy	removal	from	the	hot	bath)	

and		jins =
1
T2

dQ2
dt

	(this	is	the	rate	of	entropy	uptake	by	the	cold	bath).	

Thus,	the	Second	Law	of	thermodynamics	yields
dS
dt

=σ + jin
s − jout

s =σ + 1
T1

dQ1
dt

− 1
T2

dQ2
dt

The	First	Law	of	thermodynamics	implies	that	a	balance	equation	for	the	internal	energy	should	hold
dE
dt

=
dQ1
dt

−
dQ2
dt

+ dR
dt

where	R	is	the	work	produced	by	the	system.

If	the	system	changes	its	volume	V ,	
dR
dt

= −pdV
dt

where	p	is	pressure.



System
Thermal Bath 2

T2

Thermal Bath 1

T1

 External Work R

Q1 Q2 T1 >T2

Assuming	a	steady	state,
dE
dt

= dS
dt

=0
From	the	Second	Law	we	get
dQ2
dt

=T2σ +
T2
T1

dQ1
dt

Substituting	this	into	the	First	Law,	we	find	the	rate	of	work	generation	(or	power)

dR
dt

= −T2σ +
T2
T1

−1⎛

⎝⎜
⎞

⎠⎟
dQ1
dt

Thus, the system can operate as a heat engine and generate mechanical 
work!


Most work is performed if the engine operates near thermal equilibrium, i.e. 
where the entropy production rate is very small.

The	efficiency	of	the	engine	is	defined	as	the	ratio	of	work	generation	(power)	
to	the	heat	flow	from	the	hot	bath

η = dR/dt
dQ1 /dt

When	σ →0,	we	find	the	maximal	possible	efficiency	of	the	heat	engine η =
T2
T1

−1



System

Thermal Bath

T0

Chemostat X

µX

Chemostat Y

µY

Q

jX jY

 External Work R

Now, we consider an open chemical reactor where molecules X (substrate) are converted 
into molecules Y (product).  This reactor is connected to two external reservoirs 
(chemostats) where concentrations of molecules X or Y are maintained constant.The 
reactor is also connected to an external heat bath. The chemical potential in the chemostat 
for X molecules is higher than in the chemostat for Y molecules.

µX > µY



The	First	Law	of	thermodynamics	yields

dE
dt

= µX jX − µY jY +
dR
dt

− dQ
dt

where	jX 	is	the	number	of	molecules	X		arriving	per	unit	time	into	the	reactor	
and	jY 	is	the	number	of	molecules	Y		leaving	it	per	unit	time.

System

Thermal Bath

T0

Chemostat X

µX

Chemostat Y

µY

Q

jX jY

 External Work R

µX > µY

We	assume	that,	in	the	considered	chemical	reaction,
one	X	molecule	is	converted	into	one	Y	molecule

X→Y

The	Second	Law	of	thermodynamics	yields

dS
dt

=σ + sX jX − sY jY −
1
T0

dQ
dt

Here	sX 	and	sY 	are	amounts	of	entropy	per		molecule	X		or	Y	in	teh	respective	chemostats.
According	to	thermodynamics,	we	have

sX = −
∂µX

∂T
, 			sX = −

∂µX

∂T



System

Thermal Bath

T0

Chemostat X

µX

Chemostat Y

µY

Q

jX jY

 External Work R

µX > µY

In	the	steady	state,

dE
dt

= dS
dt

=0			and			jX = jY = j

From	the	Second	Law

dQ
dt

=T0σ +T0 sX − sY( ) j

Then,	the	Second	Law	yields

dR
dt

= −T0σ + T0 sX − sY( )− µX − µY( )⎡⎣ ⎤⎦ j

Thus, the system can operate as a chemical engine and generate 
mechanical work! 

Most work is performed if the engine operates near thermal equilibrium, 
i.e. where the entropy production rate is very small.

The	efficiency	of	the	chemical	engine	is	defined	as	the	ratio	of	work	generation	(power)	
to	the	(free)	energy	flow	from	the	substrate	chemostat

η = dR/dt
µX − µY( ) j

When	σ →0,	we	find	the	maximal	possible	efficiency	of	the	chemical	engine η =
T0

µX − µY

∂
∂T

µX − µY( )−1



Amplitude and shape of such self-oscillations do not depend on 
initial conditions. The oscillations are not induced by external forces, 
but autonomously generated by a system itself.

Persistent oscillations are possible in open chemical reactors

A→ X , 		2X +Y→3X , 		B + X→D+Y , 		X→ E

Example: the Brusselator model

Substrate Product

Limit cycle



Alan Turing (1912 - 1954)

Self-organised dissipative patterns in reaction-diffusion systems

Numerical simulations. 
Philip Maini et al (2012)

Experimental observations . 
Patrick De Kepper et al (2009)

A mathematical genius, the founder 
of  modern  computer  science  (the 
Turing  machine).  His  article,  The 
Chemical  Basis  of  Morphogenesis 
(1952), has laid foundations for the 
theory  of  non-equilibrium  pattern 
formation  in  chemical  and 
biological systems.These autonomously formed spatial structures are possible in distributed open 

chemical reactors. They exist only as long as the energy or material flow 
passing through a system is maintained. Like in self-oscillations, their 
amplitude and shape are determined by the system itself, not externally 
imposed.

time



Photo-emission electron microscopy video of wave patterns under CO oxidation on Pt(110) catalytic surface. Real 
time. S. Nettesheim, … G. Ertl, Phys. Rev. Lett. 65, 3013 (1990)

200 µm

Fast-STM videos of  oxygen  atoms adsorbed on Ru(001) surface, T = 300 K. Real time, 6 frames per second. 
J. Wintterlin, …., and G. Ertl, Surf. Sci. 394, 159 (1997)

8 nm



A toy model of molecular turbine (motor/pump)

Watermill

So far, macroscopic engines were considered. 
Now, we want to see what becomes different when 
we go to nanoscale…

As an illustration, I use a toy model of molecular 
turbine proposed by my friend, prof Jose Maria 
Sancho, from the Barcelona university. 

R. Perez-Carrasco, J. M. Sancho, Europhys. Lett. 100, 40001 
(2012); Phys. Rev. E 88, 042705 (2013)

Watermill/ wheel pump

This machine can be used as a motor or as a pump (if 
it made to rotate in the opposite direction by an 
external force



A toy model of molecular turbine

FE

Piston

When external force is relatively small, 
the turbine operates as a motor 
(mechanical engine). The pressure 
difference between two compartments  
pushes the piston in the right direction. 
When the end of the channel is 
reached, the piston is replaced by a 
new one at the opposite side and the 
cycle is repeated. In each cycle, 
mechanical work is produced.

Ideal gas 



A toy model of molecular turbine

FE

When external force is relatively small, 
the turbine operates as a motor 
(mechanical engine). The pressure 
difference between two compartments  
pushes the piston in the right direction. 
When the end of the channel is 
reached, the piston is replaced by a 
new one at the opposite side and the 
cycle is repeated. In each cycle, 
mechanical work is produced.



A toy model of molecular turbine

FE

When external force is strong, the 
turbine operates as a pump. The piston  
is dragged to the left until it reaches 
the end of the channel. Then is it 
replaced by another piston on the 
opposite side and the same motion is 
repeated again. In each cycle, a certain 
number of particles is transported 
against their gradient.



A toy model of molecular turbine

FE

When external force is strong, the 
turbine operates as a pump. The piston  
is dragged to the left until it reaches 
the end of the channel. Then is it 
replaced by another piston on the 
opposite side and the same motion is 
repeated again. In each cycle, a certain 
number of particles is transported 
against their gradient.



The macroscopic theory

FE

D

A

ρ1 ρ2 The	total	force	acting	on	the	piston	is

F = (p1 − p2)A−FE

where	p1 	and	p2 	are	pressures	
in	the	two	compartments.
For	the	ideal	gas	p= kBTρ ,
where	ρ 	is	the	density.	Therefore,

F = kBTA ρ1 − ρ2( )−FE
If	γ 		is	the	effective	friction	coefficient	of	the	piston,
the	piston	velocity	therefore	is

v = F
γ
=
kBTA ρ1 − ρ2( )−FE

γ

The velocity vanishes and changes 
its sign at the external stall force

When	FE < Fstall , 	the	turbine	operates	as	a	motor,
when	FE > Fstall , 	the	turbine	operates	as	a	pump.

Fstall = kBTAΔρ



FE

D

A

ρ1 ρ2

Now we calculate the flux of particles J. This is the number of particles 
transported through the channel per unit time.

If	the	turbine	operates	as	a	motor	(FE < Fstall ),	the	number	of	particles	
transported	in	each	step	is	N + =V0ρ1 	where	V0 = AD	is	the	channel	volume.		
If	T 	is	the	step	time,	we	have

J + =
V0ρ1
T

= vAρ1 	if	FE < Fstall .
For	the	pump,

J − =
V0ρ2
T

= vAρ2 	if	FE > Fstall .

The	(Gibbs)	free	energy	transported	with	each	particle	
in	the	case	of	ideal	gas	is	

Δg= µ1 − µ2 = kBT lnρ1 −kBT lnρ2 = kBT ln
ρ1
ρ2

where	µ1 	and	µ2 	are	chemical	potentials	of	particles	in	two	compartments.

The	energy	fluxes	associated	with	particle	flows	in	two	regimes	therefore	are	

																																				P+ = ΔgJ + , 				P− = ΔgJ −



Motor FE < Fstall

The	mechanical	power	(work	per	unit	time)	is

																				PM = FEv =
1
γ
FE Fstall −F( )

The	Gibbs	free	energy	used	to	generate	
this	work	per	unit	time	is

																					P+ = J +(µ1 − µ2)= Aρ1v(µ1 − µ2)

The	motor	efficiency	is	

																											η =
PM
P+ =

FE
Aρ1(µ1 − µ2)



Physics of molecular machines operated by a particle flux

Fig. 5: Turbine power (top) and efficiency (bottom) vs. external
force.The motor regime is on the left side and the pump regime
on the right one. The shaded zone corresponds to the force
gap where power and efficiency are null. The deterministic
power and efficiency (dashed line) are always greater than
the stochastic ones (solid line) especially near the force gap.
ρ1 = 40mM, the rest of the fixed parameters in the figures are
the same as in fig. 2.

On the contrary, the pump power is the variation in time
of the gain in free energy in the reservoirs. This is the free
energy of a particle passing between reservoirs times the
flux of particles,

PJ = |J |∆g=−JkBT ln
ρ1
ρ2
, FE >F

P
stall. (17)

The relation with the external force is obtained after
introducing (13) into (17) procuring an increasing function
of the power with the FE . This is so because the greater
is the external force the greater is the flux of particles
(fig. 5).
The dependence of PM and PJ with the particle concen-

tration difference is similar but with exchanged roles for
the pump and motor regimes (fig. 6). For low values of
the concentration difference, the external force is able to
pump particles and a higher concentration difference is
necessary to overcome the external force that is only able
to extract mechanical work from the turbine. Note that
also the power behaviour is exchanged, for low concen-
trations, the pump power exhibits the parabola and for
larger values of the concentration difference, the mechan-
ical output work grows with it.
It is worth remarking that in the intermediate leakage

zone no useful energy can be transduced. In this regime
the external force is large enough to reverse the motion

Fig. 6: Turbine power (top) and efficiency (bottom) vs. particle
concentration difference. The motor regime is on the right
side and the pump regime on the left one. The shaded zone
corresponds to the gradient gap where power and efficiency are
null. The deterministic power and efficiency (dashed line) are
always greater than the stochastic ones (solid line) especially
near the gradient gap. FE = 10pN, the rest of the fixed
parameters in the figures are the same as in fig. 2.

of the piston so no mechanical work can be extracted, and
the flux is still in the gradient direction so there is no active
pumping of particles. Therefore, during this leakage gap
not only no useful energy can be obtained but there is a
constant loss of energy (figs. 5 and 6).

Efficiency. – To understand fully the energetics of the
motor, is also interesting to see the fraction of the input
energy that is transduced into useful energy. The efficiency
can be defined as the ratio between the useful output
power over the introduced power. Both cases, motor and
pump are again separated by the gap region, where no
power can be obtained and, hence, the efficiency is zero.
For the motor regime using FE as a controll parameter,
the input power is the chemical power which is the free
energy lost by the ions crossing the machine:

ηmotor =
PM
PJ
=
vFE
J∆g

, FE <F
M
stall. (18)

The motor efficiency is zero when no force is applied,
reaches a maximum efficiency for an intermediate external
force and becomes null again at the stall force where the
output power is low but the ion leakage keeps wasting the
energy (fig. 5, bottom). This result can be compared with
the deterministic one using (5) obtaining a completely
different dependence. The deterministic efficiency is

40001-p5

PM = 1
γ
FE Fstall −F( )

η =
PM
P+ =

FE
Aρ1(µ1 − µ2)

Dashed curves correspond to the macroscopic theory

R. Perez-Carrasco, J. M. Sancho, Europhys. Lett. 100, 40001 (2012)

η = P
−

PM
=
Aρ2(µ1 − µ2)

FE

P− = 1
γ
Aρ2(µ1 − µ2) FE −Fstall( )



Motor PumpFE < Fstall FE > Fstall

The	mechanical	power	(work	per	unit	time)	is

																				PM = FEv =
1
γ
FE Fstall −F( )

The	Gibbs	free	energy	used	to	generate	
this	work	per	unit	time	is

																					P+ = J +(µ1 − µ2)= Aρ1v(µ1 − µ2)

The	motor	efficiency	is	

																											η =
PM
P+ =

FE
Aρ1(µ1 − µ2)

Both efficiencies reach their maxima at the stall force!

The	mechanical	power	(work	per	unit	time)	
used	to	operate	the	pump	is

																				PM = FEv =
1
γ
FE Fstall −FE( )

The	generated	Gibbs	free	energy	used	to	transport	particles	
against	the	gradient	per	unit	time	is

																					P− = J −(µ1 − µ2)= Aρ2v(µ1 − µ2)

The	pump	efficiency	is	

																											η = P
−

PM
=
Aρ2v(µ1 − µ2)

vFE
=
Aρ2(µ1 − µ2)

FE
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the flux is still in the gradient direction so there is no active
pumping of particles. Therefore, during this leakage gap
not only no useful energy can be obtained but there is a
constant loss of energy (figs. 5 and 6).

Efficiency. – To understand fully the energetics of the
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energy that is transduced into useful energy. The efficiency
can be defined as the ratio between the useful output
power over the introduced power. Both cases, motor and
pump are again separated by the gap region, where no
power can be obtained and, hence, the efficiency is zero.
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the input power is the chemical power which is the free
energy lost by the ions crossing the machine:

ηmotor =
PM
PJ
=
vFE
J∆g

, FE <F
M
stall. (18)

The motor efficiency is zero when no force is applied,
reaches a maximum efficiency for an intermediate external
force and becomes null again at the stall force where the
output power is low but the ion leakage keeps wasting the
energy (fig. 5, bottom). This result can be compared with
the deterministic one using (5) obtaining a completely
different dependence. The deterministic efficiency is
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PM = 1
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η =
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η = P
−

PM
=
Aρ2(µ1 − µ2)

FE

P− = 1
γ
Aρ2(µ1 − µ2) FE −Fstall( )



What becomes different at nanoscales?

FE

ρ1 ρ2
A. The piston will be subject to thermal fluctuations that affect its motion. 
B. The number of particles transported per a step may be small and stochastic 

motions of individual particles have to be resolved.

A The	piston	motion	is	now	described	by	a	stochastic	Langevin	equation

γ dX
dt

= F +ξ(t)

It	includes	a	random	thermal	force	ξ(t).
According	to	the	Langevin	theory	of		Brownian	motion;
this	noise	has	Gaussian	statistics,	its	mean	value	is	zero
and	its	correlation	function	is

																				 ξ(t)ξ( ′t ) =2γ kBTδ(t − ′t )

The	frequency	spectrum	of	thermal	noise	is	flat	
and	therefore	it	is	also	called	"white".



Physics of molecular machines operated by a particle flux

Fig. 5: Turbine power (top) and efficiency (bottom) vs. external
force.The motor regime is on the left side and the pump regime
on the right one. The shaded zone corresponds to the force
gap where power and efficiency are null. The deterministic
power and efficiency (dashed line) are always greater than
the stochastic ones (solid line) especially near the force gap.
ρ1 = 40mM, the rest of the fixed parameters in the figures are
the same as in fig. 2.

On the contrary, the pump power is the variation in time
of the gain in free energy in the reservoirs. This is the free
energy of a particle passing between reservoirs times the
flux of particles,

PJ = |J |∆g=−JkBT ln
ρ1
ρ2
, FE >F

P
stall. (17)

The relation with the external force is obtained after
introducing (13) into (17) procuring an increasing function
of the power with the FE . This is so because the greater
is the external force the greater is the flux of particles
(fig. 5).
The dependence of PM and PJ with the particle concen-

tration difference is similar but with exchanged roles for
the pump and motor regimes (fig. 6). For low values of
the concentration difference, the external force is able to
pump particles and a higher concentration difference is
necessary to overcome the external force that is only able
to extract mechanical work from the turbine. Note that
also the power behaviour is exchanged, for low concen-
trations, the pump power exhibits the parabola and for
larger values of the concentration difference, the mechan-
ical output work grows with it.
It is worth remarking that in the intermediate leakage

zone no useful energy can be transduced. In this regime
the external force is large enough to reverse the motion

Fig. 6: Turbine power (top) and efficiency (bottom) vs. particle
concentration difference. The motor regime is on the right
side and the pump regime on the left one. The shaded zone
corresponds to the gradient gap where power and efficiency are
null. The deterministic power and efficiency (dashed line) are
always greater than the stochastic ones (solid line) especially
near the gradient gap. FE = 10pN, the rest of the fixed
parameters in the figures are the same as in fig. 2.

of the piston so no mechanical work can be extracted, and
the flux is still in the gradient direction so there is no active
pumping of particles. Therefore, during this leakage gap
not only no useful energy can be obtained but there is a
constant loss of energy (figs. 5 and 6).

Efficiency. – To understand fully the energetics of the
motor, is also interesting to see the fraction of the input
energy that is transduced into useful energy. The efficiency
can be defined as the ratio between the useful output
power over the introduced power. Both cases, motor and
pump are again separated by the gap region, where no
power can be obtained and, hence, the efficiency is zero.
For the motor regime using FE as a controll parameter,
the input power is the chemical power which is the free
energy lost by the ions crossing the machine:

ηmotor =
PM
PJ
=
vFE
J∆g

, FE <F
M
stall. (18)

The motor efficiency is zero when no force is applied,
reaches a maximum efficiency for an intermediate external
force and becomes null again at the stall force where the
output power is low but the ion leakage keeps wasting the
energy (fig. 5, bottom). This result can be compared with
the deterministic one using (5) obtaining a completely
different dependence. The deterministic efficiency is
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When	thermal	fluctuations	are	taken	into	account,
the	mean	flux	of	particles	through	the	channel	is

where	F = Fstall −FE

FD∼ kBT

This	leads	to	two	principal	effects:

1.	Within	an	interval	of	forces	(gray	region	in	the	figure)
the	nanoturbine	does	not	persistently	operate	as	a	motor	or	a	pump,
it	alternates	randomly	between	the	two	regimes

2.	The	efficiencies	of	the	nanoscale	motor	and	pump	vanish	
at	the	boundaries	of	this	gray	zone.



What becomes different at nanoscales?

FE

ρ1 ρ2
A. The piston will be subject to thermal fluctuations that affect its motion. 
B. The number of particles transported per a step may be small and stochastic 

motions of individual particles have to be resolved.

B

γ dX
dt

= − ′Vp(xi − X )−FE +ξ(t)
i
∑

γ p

dxi
dt

= ′Vp(xi − X )+ξP(t)

The	Brownian	motion	of	particles	i =1,2,...,N 	that	interact	with	the	piston	
was	numerically	simulated,	together	with	the	stochastic	motion	of	the	piston	itself

where	the	interaction	potential	was

																									Vp(xi − X )=Hexp −
xi − X
a
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The	numerical	study	was	performed	for	a	more	efficient,	two-piston	turbine.
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FIG. 9. (Color online) Comparison of numerical (symbols) and
analytical results (solid line) for the velocity (5) and the flux of the
turbine (20).

diffuse faster than the advance of the turbine, which is a good
approximation to the biological scenario. Actually, even for
large values of the velocities, with an external assisting force
(Fc < 0), the motor returns values only slightly slower than
the theoretical prediction.

The resulting values of the flux also match the values pre-
dicted analytically (20) (Fig. 9) in the multiple-vane scenario
but taking into account that the volume of particles that fits
inside the two vanes depends on the actual expression for
Vp through β. Actually, simulations allow us also to study the
corresponding value of β, obtaining an effective value β = 0.7
similar to the prediction β1. The flux predicted in this way fits
very well with the stochastic simulations except for some little
discrepancies near the stall forces, where the diffusion velocity
of the particles becomes more important (Fig. 9). This is so,
because in the leakage zone, fluctuation of the turbine around
states I and II is more frequent and the dynamics of charging
and discharging of the turbine becomes more relevant.

The efficiency of the motor (3) can also be computed and
gives a good match with the analytic model (Fig. 10). The
computed efficiency recovers the decay of the efficiency near
the stall forces of the device. This result entails that the analytic
description is able to capture the energetic performance of the
particle transduction device even near the leakage zone where
discrepancies from the solution of the velocity and the flux can
imply large deviations.

IV. CONCLUSIONS AND PERSPECTIVES

Both, the analytical and the computational results of the
multiple-vane turbine model allow us to tackle the description
of a molecular turbine more realistically. They reveal large
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FIG. 10. (Color online) Efficiency of the turbine computed
numerically (symbols), analytically using the two-vane turbine (solid
line) through (20) and the one-vane turbine (dashed line) (7).

deviations from both the deterministic and the one-piston
system. Additionally, these results also reassert the phe-
nomenology described in the ideal one-piston turbine model,
this time enhanced by finding a larger leakage zone and a
larger deviation of the expected efficiency maxima that can
span tens of pN. In particular the new regime of no profit
(zero efficiency) is a direct consequence of the relevance
of thermal fluctuations in these nanometric devices. The
insight of such results is important since molecular motors
are expected to work in an optimal performance regime, and
thus they must have evolved to work optimally in a thermalized
environment.

The present approach can be extended easily to more
realistic experimental situations. For instance, in the cell
scenario with ions and electrostatic membrane potential we
expect a drastic increase of the flux and power. In this
case the model is easily upgraded and numerically simulated
by adding a constant force acting on the ions inside the
channel. Hopefully, our analysis can inspire a new look at
the future experiments in real molecular motors such as F0F1-
ATPsynthase and the bacterial flagellar motor. In particular, it
should be possible to observe and quantify our prediction of
the existence of a large leakage domain experimentally.
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Dashed and solid curve are analytical predictions (for one and two 
pistons) accounting only for thermal fluctuations for the pistons, symbols 
show numerical simulation results  
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