Kanazawa University WPI-NanoLSI
2020 Academic Year Bio-SPMs Collaborative Research
Application Guidelines

The Nano Life Science Institute (NanoLSI), Institute for Frontier Science Initiative, Kanazawa University, is calling for applications for Bio-SPMs collaborative research.

1. Aims

The research teams in Kanazawa University have engaged in the pioneering development of original Bio-SPM technologies, including Super-resolution AFM (FM-AFM/3D-AFM), High-speed AFM, and Scanning Ion Conductance Microscope (SICM), and applied them to the life sciences.

WPI-NanoLSI, Kanazawa University, aims to contribute to the development of the nano life sciences by promoting collaborative research using these Bio-SPMs, beyond the boundaries of individual universities and research institutions. Here, we call for applications for collaborative research projects that are carried out by the applicants using our Bio-SPMs, with the cooperation of the NanoLSI faculty members.

* Please refer to the overview of each Bio-SPM technology at the end of this document.

2. Application Eligibility

Applicants must be researchers or engineers from national public or private universities, national research institutes, private companies, overseas research institutes, etc. Please note that students such as graduate students and undergraduate students are not eligible as an applicant, but can be included in the research project team. Depending on the applicant’s affiliated institution, a collaborative research contract would be required.

3. Research Period

For applicants adopted in 1st or 2nd call, from the date of approval to March 31, 2021.
For applicants adopted in 3rd call, research can be carried out after March 31, 2021.
Note: you are supposed to inform a research period within one month after the notification of approval.

4. How to Apply

Prepare the following application materials (i.e., Form 1 and curriculum vitae). If applicants have discussed research topics, research schedule, schedule for visiting NanoLSI, etc. with the NanoLSI faculty member(s), indicate these things in Form 1.
[Application Materials]

| (Form 1) | “2020 Academic Year Bio-SPMs Collaborative Research, Application and Collaborative Researcher Approval Form” |
| (Arbitrary Format) | “Curriculum vitae for the principal investigator (applicant) only” |

*Forms 1 can be downloaded from the Bio-SPMs Collaborative Research website: https://nanolsi.kanazawa-u.ac.jp/en/research/applications/bio-spm/

[Submission Deadlines]

Applications must reach us by

1st in 2020: May 29, 2020 (Friday), 17:00 JST.

2nd in 2020: July 27, 2020 (Monday), 17:00 JST

3rd in 2020: October 30, 2020 (Friday), 17:00 JST

1st in 2021 will be May 31, 2021 (Monday), 17:00 JST

For urgent cases, applications will be accepted regardless of the deadline. In such cases, contact the person in charge of “5. Inquiries Regarding Research Contents.”

[Submission Destination]

Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan.
Tel.: +81-76-234-3866, Fax: +81-76-234-4559
E-mail: bio-spmscr_nano@ml.kanazawa-u.ac.jp

5. Inquiries Regarding Research Contents

Send an inquiry to the e-mail address below. The inquiry should include the type of Bio-SPMs you wish to use (either Super-resolution AFM [FM-AFM/3D-AFM], High-speed AFM, or SICM). The reply will come from the person in charge of the specific Bio-SPM technology.

E-mail: bio-spmscr_nano@ml.kanazawa-u.ac.jp

6. Decisions

After the review by the Expert Committee of NanoLSI, Kanazawa University, the director of NanoLSI will decide which applications will be approved. The decision will be informed to the applicants.

7. Research Report

An approved researcher has an obligation to report the research results when the research period is over. Using Forms 2 and 3, prepare and submit the research report. The deadline is May 7, 2021. The
summary of research results (Form 3) will be publicly posted on the NanoLSI Bio-SPMs Collaborative Research website in 2020 academic year.

<table>
<thead>
<tr>
<th>(Form 2)</th>
<th>“2020 Academic Year Bio-SPMs Collaborative Research, Research Report”</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Form 3)</td>
<td>“2020 Academic Year Bio-SPMs Collaborative Research, Research Report Summary”</td>
</tr>
</tbody>
</table>

*Forms 2 and 3 can be downloaded from the Bio-SPMs Collaborative Research website: https://nanolsi.kanazawa-u.ac.jp/en/research/applications/bio-spm/

8. When the research papers are published

In order to measure the effectiveness of this Bio-SPMs collaborative research activity, we would like to collect the data of research papers published through collaborative research carried out at NanoLSI. Therefore, we sincerely hope that the approved researchers will kindly inform us when the research papers are published. In addition, for three years after the research period is over, we would like to ask all the approved researchers every June via e-mail if the research papers through collaborative research were newly published.

9. Others

(a) Research applications that match our policy described in “1. Aims” will be preferentially approved. It is preferable that applicants have already conducted sample preparations and preliminary experiments, for example, biochemical experiments, test of observation conditions, and microscopic analysis by optical microscope, electron microscope, SPM, etc. However, applications without any preliminary results will also be approved depending on the contents.

(b) If your samples or methods are quite new to Bio-SPM measurements, we will select your proposal as a “Preliminary Investigation”. In Preliminary Investigation, Experts of Bio-SPM will perform some experiments to search for the measurement conditions. When the measurement conditions for your proposal are fixed, you can start a full research.

(c) When a submitted application is approved, the principal investigator (PI) responsible for the collaborative research and the collaborative partner researcher should be a collaborative researcher of NanoLSI, Kanazawa University. All members who participate in the approved research project can stay at Kakuma Guest House (http://guesthouse.w3.kanazawa-u.ac.jp/index.html). If no room is available at Kakuma Guest House, stay at hotels in downtown.

(d) If you cannot cover the travel expenses including transportation and accommodation for staying at Kanazawa University, mention it in the appropriate part of Form 1. Travel expenses will be supported up to 200K JPY for domestic applicants and 350K JPY for overseas applicants based on the travel expense regulations of Kanazawa University after the review by the Expert Committee of NanoLSI.
(e) For the outstanding proposals related to cancer research, travel expenses will be supported up to 200K JPY for domestic applicants and 350K JPY for overseas applicants by Cancer Research Institute, Kanazawa University based on the travel expense regulations of Kanazawa University. Adopted should mention as follows when the results are published, “This work was partly supported by Extramural Collaborative Research Grant of Cancer Research Institute, Kanazawa University.”

(f) Graduate and undergraduate students can also participate in a collaborative research team. In such cases, approval from their supervisor is absolutely necessary. The approval form is available in Form 1: “2020 Academic Year Bio-SPMs Collaborative Research, Application and Collaborative Researcher Approval Form.” Travel expenses can be covered for only graduate students, but not for undergraduate students.

(g) If the supervisor of the student collaborative researchers changes, a new approval from the new supervisor would be necessary. In such cases, contact the person in charge of the Bio-SPMs Collaborative Research (E-mail: bio-spmscr_nano@ml.kanazawa-u.ac.jp).

[Supplementary Information]

- Regarding the Birth date, Age, and Gender fields in the Application
 These fields are necessary for making statistics for the evaluation report by the Ministry of Education, Culture, Sports, Science and Technology, in which the ages and genders of collaborative researchers must be presented. The information provided will not influence any decisions. In addition, personal information provided will be handled with the utmost caution.

- Regarding Filling out the Application
 Add more spaces freely if not enough space is available in the application form. The number of pages can be increased.
[Over view of each Bio-SPM technology]

- **Super-resolution AFM (FM-AFM & 3D-AFM)**
 FM-AFM (Frequency-modulation Atomic Force Microscope) can visualize subnanometer-scale surface structures of biomolecules in solution. Combined with 3D scanning technique, it can also visualize 3D distribution of hydration and flexible surface structures at solid-liquid interfaces. The imaging rate of FM-AFM and 3D-AFM is typically 1 min/frame. The optimal spatial resolution of the instrument is 0.3 nm in the lateral direction and 0.01 nm in the vertical direction. In the case of biomolecular imaging, the practical resolution is mostly determined by the fluctuation of the surface structures rather than the instruments. For more details, see the following articles:

- **High-speed AFM (HS-AFM)**
 HS-AFM (High-speed Atomic Force Microscope) can visualize moving objects in solution. Its temporal resolution is typically 100 ms/frame, while the spatial resolution is 2-3 nm in the lateral direction and 0.15 nm in the vertical direction. When it is applied to protein molecules in action, the acquired HS-AFM images can provide a significant insight into how the molecules function. For more details, see the following review articles:
Scanning Ion Conductance Microscopy (SICM)

SICM has a unique measurement principle and provides unprecedented opportunity that enables submicroscale functional imaging of single live cells by a combination of nanoscale local stimulation and noncontact topography imaging. The imaging rate of SICM is 30-300 s/frame. Spatial resolution of the instrument is 10 nm in the lateral direction and 5 nm in the vertical direction. For more details, see the following articles:

