NanoLSI Open Seminar
recommended by Prof. Alexander Mikhailov (PI of NanoLSI)

Program

__________________________ TALK 1 ______________________

2:00PM~ “Simulating life's key protein machines in metabolic and genetic control”

Dr. Jin Yu
Complex Systems Research Division,
Beijing Computational Science Research Center, Beijing

__________________________ TALK 2 ______________________

3:10PM~ “Using molecular simulation to understand the interplay between molecular machine geometry and the kinetics of conformational changes”

Dr. Jeffrey Noel
Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, and Max Delbrück Center for Molecular Medicine, Berlin

Date and Time
2:00-4:10 PM, Tuesday, March 13, 2018

Venue
The 5th lecture room,
Natural Science and Technology Hall 5
Bio-molecular machines are made of nano- to micrometer scale protein complexes as mechano-chemical vehicles with energy self-sufficiency. My researches have been focused on physical mechanisms of these naturally evolved machines, for example, on how they maintain sufficiently high energy efficiency and accuracy despite of environmental noises and fluctuations. Advancements in single molecule technologies and high-resolution structural characterizations in recent years have made individual molecule interrogations possible [1]. On the other hand, physicists also started pondering about the internal complexities and operations of these microscopic machines above the proof of principles [2]. By utilizing a spectrum of molecular modeling and simulation techniques, high-performance computing, along with statistical mechanics and stochastic methods, we aim at providing physical insights of life’s fundamental machines as well as exploring artificial design strategies for bio-medical advancements [3]. Here I will briefly introduce two types of molecular machines we have recently studied: A highly efficient metabolic machine that achieves sequential ATP hydrolyses around its protein ring to further enable a rotor in the center [4], and a smallest transcription machine that moves along DNA to synthesize RNA so that to transcribe the genetic information from DNA to RNA [5,6].

[4] L Dai, H Flechsig, and J Yu. Deciphering intrinsic inter-subunit couplings that lead to sequential hydrolysis of F1·ATPase ring. Biophysical Journal 2017 (113) 1440
[6] L-T Da*, C E*, Y Shuai, S Wu, X-D Su, and J Yu. T7 RNA polymerase translocation is facilitated by helix opening on the fingers domain that may also prevent backtracking. Nucleic Acids Research 2017 (45) 7909* equal contribution
NanoLSI Open Seminar
recommended by Prof. Alexander Mikhailov (PI of NanoLSI)

“Using molecular simulation to understand the interplay between molecular machine geometry and the kinetics of conformational changes”

Jeffrey Noel
Fritz Haber Institute of the Max Planck Society and the Max Delbrück Center for Molecular Medicine, Berlin

Conformational motions in molecular machines are often constrained by the shape of the molecule itself, which creates steric obstacles along transition paths between conformational states. Simplified molecular models with atomistic representation are well suited to identifying the steric features important to conformational motions, which can include regions of the molecular machine itself, or transiently-bound cofactors and small ligands. As a concrete example, I will describe how the shape of the ribosomal accommodation tunnel, through which aa-tRNA makes a 12 nm motion during mRNA translation, includes steric features that lead to robust free energy barriers along the tRNA transition path. This effect is interpreted within an extended kinetic model of accommodation and it is shown how EF-Tu can contribute to efficient and accurate kinetic proofreading, a process which has long eluded a molecular description. In a second part, I will discuss current work in Berlin to understand dynamin, a polymeric molecular machine able to form helical assemblies around membrane tubes and catalyze their scission. I will discuss the results of our computational model of dynamin helices in the context of AFM (T. Ando et al.) and optical (A. Roux et al.) experiments on long helical assemblies.